

19" FFTS crate equipped with 8 FFTS boards and one FFTS controller

INDEX

Fea	atures:	3
1.	FFT-Spectrometer FFTS	4
	1.1. FFTS-Crate	4
	1.2. FFTS-Connectors	4
	1.2.1. FFTS-Crate Connectors	4
	1.2.2. FFTS-Board Connectors	6
	1.3. LEDs	7
	1.3.1.FFTS-Board LEDs	7
	1.3.2. FFTS-Controller-Board LEDs	7
	1.3.3. FFTS-Controller-Board 7-segment LED	8
	1.4. FFTS-Controller Board-LCD-display	9
	1.4.1. Overview Pages	9
	1.4.2. Pages for FFTS-Controller and FFTS-Boards	10
	1.5. External Control Signals (Blank/Sync)	11
	1.5.1. Blank/Sync input and output pin assignment	.11
	1.5.2. Signal example for a two Phase measurement	.11
	1.5.3. Signal example for a four Phase measurement	12
	1.5.3. Blank/Sync signal description	12
	1.6. FFTS-Board-Description	13
	1.6.1. Power-Supply	.13
	1.6.2. ADC-Section	.13
	1.6.3. Configuration	.13
	1.6.4. Control-Signals	.13
2.	FPGA-signal processing cores	14
3	Software	14
0.	3.1. FETS – The FETS control program	14
	3.1.1 FFTS Initialization Software	16
	3.1.2. UDP/SCPI Command Interface	20
	3.1.3. TCP Data Interface	21
	3.1.4. Example: SCPI command sequence	22
	3.2. FFTS-Configuration-File	23
	3.3. UDP/SCPI commands	.24
	3.3.1. Methods	.24
	3.3.2. Properties	.25
	3.3.3. Band dependent commands	25
	3.4. FFTS-Monitor GUI	.27
	3.4.1. Spectrum display	.28
	3.4.2. (on-off)/off display	.28
	3.4.3. Total-Power-Display	30
	3.5. FPGA core file	30
	3.6. Polyphase filter bank coefficients / Window file	.30
4.	Environment	.31
	4.1. Recommended Wiring-Scheme	31
	4.2. Recommended IP-Configuration	32
	4.3. Ethernet-Switch	32
	4.4. Backend-PC	.33
	4.4.1. Hardware Requirements	33
	4.4.2. Software Requirements	.33
5.	Reference documents	34

Features:

- Maximum instantaneous bandwidth: 2.5 GHz
- Up to 32768 spectral channels at full bandwidth
- Equivalent noise bandwidth (polyphase filter-bank): 88 kHz @ 2.5 GHz bandwidth / 32768 spectral channels
- On-board Ethernet Interface (100Base TX) for spectral readout and FFTS board configuration
- Input for external control signals: blank, sync, frequency reference
- Remote programmable FPGA (Xilinx Virtex6 LX240T)
- Precise time stamping of the processed spectra by on-board IRIG-B time-stamp encoding

1. FFT-Spectrometer FFTS

1.1. FFTS-Crate

Dimensions:	width/high/depth: 480 mm / 135 mm + (44 mm fan plate) / 485 mm
Weight:	13 kg

1.2. FFTS-Connectors

1.2.1. FFTS-Crate Connectors

Fast Fourier Transform Spectrometer RPG_XFFTS

Parameter		Specification
v _{ref} input differential:	connector:	2xSMA
(labeled "Ref-In +/-")	impedance:	100 Ω / AC coupling
	level:	min. 400 mVpp differential
		max. 1000 mVpp differential
	frequency:	5 – 125 MHz (5 MHz steps)
v _{ref} input single-ended:	connector:	SMA
(labeled "Ref-In SE")	impedance:	50 Ω / AC coupling
	level:	min. 800 mVpp (+ 2 dBm)
		max. 3000 mVpp (+13 dBm)
	frequency:	5 – 125 MHz (5 MHz steps)
v _{ref} output differential:	connector:	2xSMA
(labeled "Ref-Out +/-")	impedance:	100 Ω
	level:	600 mVpp differential square wave
	frequency:	100 MHz
v _{ref} output single-ended:	connector:	SMA
(labeled "Ref-Out SE")	impedance:	50 Ω
	level:	1.5 Vpp square wave
	frequency:	100 MHz
IRIG-B input:	connector:	BNC
	impedance:	25 kΩ / AC Coupling
	level:	Min. 1 Vpp
		max. 12 Vpp
		Max. 12 Vpp
Blank/Sync input:	connector:	9-pin Sub-D male
	impedance:	120 Ω differential
	level:	RS 485
Blank/Sync output:	connector:	9-pin Sub-D female
	impedance:	min. 100 Ω differential
	level:	RS 485 (1.5 V _{diff})
Ethernet (12x):	connector:	RJ-45
	standard:	100 Base-TX
	used ports:	1 – 8 (FFTS-boards)
		12 (FFTS-controller)
	unused ports:	9 – 11
Power supply:	connector:	AC-connector male
	voltage:	$108-120\ V_{AC}$ or $216-240\ V_{AC}$ (automatic
		selection)
	trequency:	50 – 400 Hz
	current:	max. 9.6 A at 115 V _{AC}
	-	max. 5.0 A at 230 V _{AC}
	fuse:	5 × 20 mm 10 A slow at 115 V _{AC}
		5 x 20 mm 6.3 A slow at 230 V _{AC}

1.2.2. FFTS-Board Connectors

IF inputs:connector:
impedance:
level:SMA
50 Ω
absolute maximum +17 dBm! / 0 V DC!
nominal -4 dBmADC-Clock output:connector:
impedance:
level:2xSMA
100 Ω
1800 mVpp differential

1.3. LEDs

1.3.1.FFTS-Board LEDs

LED	Function	Off	Green	Red	Yellow
TxD	transmit status	not transmitting	transmitting	Phase-time too short to transmit data	-
Temp.	over temperature warning, status of ADC-Temp. regulation	etemperature OK, regulation off	ADC-temp. stable, blink: wait for stabilization	75°C over temperature shutdown (reset by host)	-
U/I	voltage/current (U/I) warning	-	all U/I's within 5% tolerance	blink: one or more U/I's out of tolerance	-
IRIG-B	status of IRIG-B time signal	-	100 ms pulse each second: IRIG-B ok	error in IRIG-B signal	-
Synth	status of ADCclock synthesizer	synthesizer not locked	synthesizer locked	synthesizer not locked	-

1.3.2. FFTS-Controller-Board LEDs

LED	Function	Off	Green	Red		Yellow
Blank	Blank-signal a status of contro clock-synthesize	andrecord IF- llerinputs er	Blank IF-inputs	synthesizer not locked	-	
Sync	Sync-signal a status of contro clock-synthesize	andnot Phase one ller er	Phase one	synthesizer not locked	-	
IRIG-B	status of IRIG-E time signal	5 -	100 ms pulse each Second: IRIG-B ok	error in IRIG-B signal	-	

1.3.3. FFTS-Controller-Board 7-segment LED

Controlled by the Select-Knob.

O. Overview Page **O.** Controller Page

1-A FFTS-Board specific pages

1.4. FFTS-Controller Board-LCD-display

Pages controlled by the **Function**-Knob.

<u>NOTE:</u> The" Function" and "Value" - knobs have turn-and-push functionality!

1.4.1. Overview Pages

Boards Controller-Rank	:	08 00	<u>1st. Page:</u> Number of Boards (1 – 8) and Controller- Rank (0 n). These values are adjustable with Function- and Value-Knob if the on- board "CHANGE_EN"-Jumper is set.
---------------------------	---	----------	---

ClkSel: RefClk:	100 100	MHz.000	int MHz	2 nd . Page: Selected Input-Clock (int/ext/ext2) and frequency measured at external Reference Clock.
--------------------	------------	---------	------------	--

<u>3rd . Page:</u> IF Leveling. Each pixel represents 1 dBm. The display covers the level range -21 to +11 dBm.

<u>4th . Page:</u> ADC-Temperatures. Each pixel represents 2.5 °C. The display covers the temperature range 20 to 100 °C.

5th <u>. Page:</u> FPGA-Temperatures. Each pixel represents 2.5 °C. The display covers the temperature range 20 to 100 °C.

XFFTS Manual_2015 Radiometer Physics GmbH Werner-von-Siemens-Str. 4 53340 Meckenheim, Germany 9

+49 (0) 2225 99981 – 0 www.radiometer-physics.de info@radiometer-physics.de

All data and specifications are subject to change without notice! © Radiometer Physics GmbH 2015

1.4.2. Pages for FFTS-Controller and FFTS-Boards

1st . Page: Blank/Sync:

Sync Blank Phase Mode	: 01000.000 : 00001.000 : 1/2 : Internal	ms ms I	<u>1st. Page:</u> Blank/Sync: Phase-time (Sync-time) Blank-time current Phase / Total Number of Phases Blank/Sync-generation:
IP :1 Mask:2 Mac :0 Port:9	92.168.010. 55.255.255. 29999990A0A 999	010 000	<u>2nd Page:</u> Network: P-Address Subnet-Mask MAC-Address Port-Number (default: 9999)
Time Day Sp-ver Vx-ver	: 09:30:00 : 42 : 5.19.5 /2 : 5.19.4	<u>3</u> 000	B rd <u>Page:</u> Time and Version: IRIG-B time IRIG-B day of the year Spartan-Core-Version / Board ID Virtex-Core-Version ^{a b}
5.0V 3.3V 2.5V Clk	: 4.98V 02 : 3.27V : 2.51V : 2500 MHz	.4A 1 Int r	^{4th <u>. Page:</u> FFTS-Board voltages 1: ^a nominal value : measured value current at voltage nominal value : measured value nominal value : measured value measured}
2.5V 1.8V 1.0V	-Clock-frequer : 2.47V ana : 1.82V : 0.98V 10	log 1 .4A r c	5 th <u>. Page:</u> FFTS-Board voltages 2: ^a nominal value : measured value nominal value : measured value nominal value : measured value current at voltage
ADC FPGA Board Level	: +056.3°C : +065.5°C : +031.7°C : -003.4 dB	<u>e</u> I	6 th <u>. Page:</u> Temperatures and IF-Level: ^a ADC-temperature FPGA-temperature Board-temperature F-level ^b
Chan. Bandw. IntCnt Dump#	: 32768 : 2500 MHz : 00076218 : 00000194	7 r k 	7 th . Page: FFTS-Parameter: ^a number of channels ^b Nyquist pandwidth of FFTS ^b number of integrated spectra at each Phase ^b dump number

(increased each Phase)^b

10

а

b

Not Available for Controller-Board

Only Available if Virtex-Core is Loaded

1.5. External Control Signals (Blank/Sync)

1.5.1. Blank/Sync input and output pin assignment

	1			
	SYNC			
-				
	2			
	BLAN			
K-				
3	IRIG-CLK- °			
4	IRIG-AM- ^c			
5	GND			
6	SYNC+			
7	BLANK+			
8	IRIG-CLK+ °	9	IRIG-AM+ ^c c	
	only for stacking multiple	crates	3	

1.5.2. Signal example for a two Phase measurement

11

1.5.3. Blank/Sync signal description

The first measured phase is indicated by a high-level of the Sync-signal over the whole phase.

A new phase is indicated by a rising edge of the Blank-signal. While the Blank-signal remains high, the measurement is stopped (no spectral integration). Whenever the Blanksignal is low, the FFTS integrate spectra.

The FFTS-Controller is able to get these synchronisation signals from external (Blank/Sync input) and to chain them to the Blank/Sync output or generate the signals internally and forward them to the Blank/Sync output. The control-signals are differential at RS 485 level.

1.6. FFTS-Board-Description

1.6.1. Power-Supply

The only external supply-voltage to the boards is $5.0 V_{DC}$ at up to 10 A. All other voltages are on-board generated by dedicated power supplies. The external 5.0V supply is generated by the power supplies built into the backside of the crate.

1.6.2. ADC-Section

The analog-to-digital converter (ADC) has a resolution of 10 bits. It supports sample rates from 200 Mega samples per second (Msps) up to 5 Giga samples per second (Gsps). An on-board synthesizer generates the sampling-clock from a crate-internal 100 MHz reference clock signal.ina a The internal 100 MHz reference clock is either generated by an internal crystal-oscillator (50 ppm) located on the FFTS-Controller board or derived from the external reference frequency input (5 – 125 MHz).

1.6.3. Configuration

The basic configuration is stored in a Flash-PROM on the FFTS-Board. During power-up phase, this data is loaded by a Spartan-FPGA. After that, the Spartan receives IP- and MAC-Address from the FFTS-Controller board and sets up an on-board TCP-server for communication with the Backend-PC. Now the Backend-PC is able to load the desired FFT-Core to the Virtex-FPGA by Ethernet and start further configurations.

1.6.4. Control-Signals

The signals **BLANK**, **SYNC**, **IRIG_AM** and **IRIG_CLK** are distributed by the FFTSController over the backplane to each FFTS-Board. The signals **BLANK** and **SYNC** are used to synchronize the measurements of all FFTS-Boards. **IRIG_AM** and **IRIG_CLK** are needed to distribute the time information to the FFTS-Boards.

Fig. 1 Rear Side cabling in Master/Slave configuration

2. FPGA-signal processing cores

The default core for the Virtex-6 FPGA has 32768 spectral channels and is able to process spectra of 2.5 GHz bandwidth. The channel spacing (Δv) is 2.5 GHz divided by 32768 channels = 76 kHz. The FPGA core implements a 4-tap poly-phase filter bank algorithm. The filter coefficients are optimized for astronomical line observations. The equivalent noise bandwidth (ENBW) is 1.16 × Δv , thus 88 kHz at 2.5 GHz bandwidth and 32768 channels. Compared to a standard window-FFT processing, the poly-phase filter bank algorithm has a significant reduced frequency scallop loss, less bandwidth expansion, and faster sidelobe fall-off.

The FFTS is delivered with a standard FPGA core: 2.5 GHz bandwidth / 32768 channels. Additional cores with higher frequency resolution (smaller bandwidth and more spectral channels) are available upon request.

3. Software

3.1. FFTS – The FFTS control program

The FFTS is controlled by a multi-threaded program: FFTS (FFTS software). FFTS can serve FFTS systems (arrays) with up to 32 FFTS-Boards and 4 FFTS-Crates. For each FFTS-Board one program thread is started, which controls the board configuration, collects data and handles house-keeping

information. Currently, the FFTS software is available for 32- and 64-bit Linux-PCs (Kernel 2.6.18 or later).

During the initialization phase, the FFTS program loads startup parameter from the FFTS configuration file "FFTS.cfg" and establishes the TCP connection to the FFTS hardware. Following this, FFTS uploads the FPGA core file (e.g. "virtex6_32K_2500_4wola.bin") and the poly-phase filter coefficients (e.g. "FLATTOP4WOLA32K.dat") to the FFTS-Boards via Ethernet. From that moment the FFTS is ready for measurements.

The FFTS software is controlled by the UDP/SCPI command interface, which is structured along the baselines documented in RD-001. A summary table of all currently implemented SCPI commands is listed in section 3.4. The FFTS software uses a TCP-network connection to transmit the spectral data together with header information (integration time, time stamp,...) to an external data consumer (e.g. the observing system) for data recording. The implemented protocol is compatible to the SCPI backend data stream interface, which is documented in RD-01.

Independent of the FFTS control program, there is an on-line monitor display available (FFTS-Monitor Tool) for the FFTS, which is implemented as a LabView application. The

FFTS-Monitor Tool provides additional information about the status of the FFTS

(bandpass, level, Blank/Sync time, temperatures, etc.) to the user. A description of the FFTS-Monitor Tool is given in section 3.3. The communication between the FFTS software and the FFTS-Monitor Tool is implemented by FileIO. The connection between the individual programs is illustrated in the following diagram.

All data and specifications are subject to change without notice! © Radiometer Physics GmbH 2015

3.1.1 FFTS Initialization Software

Before you start the FFTS main program, make sure that the FFTS-Crate is correctly connected to the Ethernet switch and the FFTS-PC along the recommendations made in section 4.

Switch on the FFTS (plus ventilation!), the Ethernet switch and the FFTS-PC.

After successful login, the FFTS program is called from the command line, just by typing FFTS.

To make use of the different bandwidths, the program is started using:

./FFTS –configfile xxx.cfg (where xxx stands for FFTS_2000 for the 2000MHz core and for

FFTS.cfg for the 2500MHz core or FFTS_multicore.cfg for mixed operation) Depending on the crate configuration, one has to edit the file FFTS_multicore.cfg thus assigning the individual bandwidth to the individual board numbers.

<u>Example:</u> (excerpt from "FFTS_MULTICORE.cfg" for 2500MHz and 2000MHz bandwidths)

SETUP: 2500 MHz bandwidth, 32k spectral channels

[FPGA1]						
coreFile =/XILIN	coreFile =/XILINX/virtex6_32K_2500_4wola_19-6_2500.bin					
bandwidthMHz =	2500					
numberOfChannel	ls = 32768					
specFilter	= 2					
windowFile	=/windows/FLATTOP4WOLA32K.dat					
WOLA	= 4					
ADCdelayFile	=./ADCdelay.data					

SETUP: 2000 MHz bandwidth, 32k spectral channels [FPGA2] coreFile = ../XILINX/virtex6_32K_2000_4wola_19-8_2490.bin bandwidthMHz = 2000 numberOfChannels = 32768 specFilter = 2 windowFile = ../windows/FLATTOP4WOLA32K.dat WOLA = 4 ADCdelayFile = ./ADCdelay.data

configuration settings BOARD->FPGA<num> [BOARD_FPGA]

XFFTS Manual_2015 Radiometer Physics GmbH Werner-von-Siemens-Str. 4 53340 Meckenheim, Germany 16

+49 (0) 2225 99981 – 0 www.radiometer-physics.de info@radiometer-physics.de

All data and specifications are subject to change without notice! © Radiometer Physics GmbH 2015

FFTSboard01	= FPGA1
FFTSboard02	= FPGA1
FFTSboard03	= FPGA1
FFTSboard04	= FPGA1
FFTSboard05	= FPGA1
FFTSboard06	= FPGA1
FFTSboard07	= FPGA1
FFTSboard08	= FPGA2

Board 08 will run at 2000MHz whereas all other boards run at 2500MHz

The FFTS software is stopped by sending the Ctrl+C command.

Example: Successful startup sequence for a multi-core FFTS:

```
+-----+ |
 *** XFFTS: The eXtended Bandwidth FFT-Spectrometer ***
 VERSION: 20110331 RELEASE/BUILD: Mar 31 2011
 --- RPG Radiometer physics GmbH ---
Birkenmaarstr. 10, 53340 Meckenheim, Germany
 http://www.radiometer-physics.de
 +-----+
+
```

Configuration file: FFTS_MULTICORE.CFG Telescope name: RPG Backend name: XFFTS Port SCPI (UDP): 16210 Port FitsWr(TCP): 25144 Used FFTS boards: 2 >>> Multi-core setup (4 FPGA cores). <<<

 FPGA-Core
 1:
 300 MHz / 32768 channels

 FPGA-Core
 2:
 2500 MHz /

 32768 channels
 FFTS-Board #01:
 2500 MHz / 32768 channels

 FFTS-Board #02:
 300 MHz / 32768 channels

Simulation-Mode: NO

REMARK: Create FitsWriter
server .. REMARK: FitsWriter
server started.
REMARK: FitsWriterServer() started!
REMARK: FitsWriterServer(): Wait for Client at port 25144!
REMARK: Create FitsWriter thread ...
REMARK: FitsWriter thread started.
REMARK: Install signal handler ... okay.

REMARK: Wait and hold on until all TCP ports are closed ...

REMARK: Connect FFTS master (192.168.10.10) ... okay. REMARK: Setup Blank, Sync, Phases to FFTS Master ... Okay. REMARK: Startup 2 worker thread(s). One for every FFTS board. REMARK: Connect FFTS board 01 (192.168.10.11) ... okay. REMARK: Connect FFTS board 02 (192.168.10.12) ... okay. REMARK: FFTS board 01 :: Load FPGA: -> ../XILINX/spain/virtex4 32K 2500 4wola 19-4m 2500.bin. REMARK: FFTS board 02 :: Load FPGA: -> ../XILINX/spain/virtex4_32K_300_4wola_19-4p 312.bin. REMARK: FFTS board 01 :: Download finished. REMARK: FFTS board 01 :: Setup common defaults .. REMARK: FFTS board 01 :: Setup okay. REMARK: FFTS board 01 :: Bandwidth: 2500 MHz REMARK: FFTS board 01 :: Load window: ../windows/FLATTOP4WOLA32K.dat. REMARK: FFTS board 01 :: 128K point Window loaded. REMARK: FFTS board 02 :: Download finished. REMARK: FFTS board 02 :: Setup common defaults .. REMARK: FFTS board 02 :: Setup okay. REMARK: FFTS board 02 :: Bandwidth: 750 MHz REMARK: FFTS board 02 :: Load window: ../windows/FLATTOP4WOLA16K.dat. REMARK: FFTS board 02 :: 128K point Window loaded. REMARK: All FFTS boards are successfully initialized. REMARK: FFTS board 01 :: Select ADC input I REMARK: FFTS board 01 :: Startup data transfer ... Okay. REMARK: FFTS board 02 :: Select ADC input I REMARK: FFTS board 02 :: Startup data transfer ... Okay. REMARK: Enable global Blank/Sync ... Okay. REMARK: Create SCPI thread .. REMARK: SCPI control thread started.. Okay. REMARK: Optimize ADC/FPGA timing: 32/32 REMARK: FFTS board 01, SN 5.000 :: ADC/FPGA timing: 1 - 4 (3) REMARK: FFTS board 02, SN 5.001 :: ADC/FPGA timing: 9 - 13 (5) REMARK: FFTS board 01 :: Reset ADC .. REMARK: FFTS board 02 :: Reset ADC .. REMARK: ADC calibration successful. REMARK: ADC-interleaving okay. REMARK: Now the XFFTS is ready for observing. Good luck!

XFFTS Manual_2015 Radiometer Physics GmbH Werner-von-Siemens-Str. 4 53340 Meckenheim, Germany 19

3.1.2. UDP/SCPI Command Interface

The following Python program shows a very simple way to send and receive UDP/SCPI commands to/from the FFTS software. If the program is called on an external PC, the line UDPHOST must declare the IP number of the FFTS-PC. The UDPPORT number must agree with the port given in the FFTS.cfg file (see section 3.2).

#!/usr/bin/env python

```
# udptelnet -- "telnet" like application using UDP instead of
TCP
from
string
import
atoi from
socket
import *
from
thread
import *
def
recv(ud
pCliSoc
k):
while
1:
        data, addr =
udpCliSock.recvfrom(BUFSIZE)
if not data: break
                            print
'RECV> ',data
UDPHOST = 'localhost' # or the valid IP number xxx.xxx.xxx
UDPPORT = 16210
BUFSIZE = 16*1024
ADDR = (UDPHOST, UDPPORT)
udpCliSock =
socket(AF_INET,
SOCK_DGRAM)
start_new_thread(recv,(
udpCliSock,))
w
h
i
1
e
1
:
    data =
raw_input('')
print 'SEND> ',
data
         data =
data + '\n'
                if
```

XFFTS Manual_2015 Radiometer Physics GmbH Werner-von-Siemens-Str. 4 53340 Meckenheim, Germany 20

+49 (0) 2225 99981 – 0 www.radiometer-physics.de info@radiometer-physics.de

not data: break udpCliSock.sendto(d ata, ADDR)

udpCliSock.close()

Examples:

/home/FFTS/sh> ./udptelnet
RPG:XFFTS:version?
SEND> RPG:XFFTS:version?
RECV> RPG:XFFTS:VERSION 20110331 2011-03-31T23:44:35.001+0000

```
RPG:XFFTS:BAND1:numSpecChan?
SEND> RPG:XFFTS:BAND1:numSpecChan?
RECV> RPG:XFFTS:BAND1:NUMSPECCHAN 32768 2011-03-
31T23:47:15.866+0000
SEND> RPG:AFFTS:cmdSyncTimeRPG:XFFTS:cmdSynctime 500000
SEND> RPG:XFFTS:cmdSyncTime 500000
RECV> RPG:XFFTS:CMDSYNCTIME 500000 2011-03-31T23:49:15.192+0000
```

RPG:XFFTS:configure SEND> RPG:XFFTS:configure RECV> RPG:XFFTS:CONFIGURE 2011-03-31T23:52:05.873+0000

3.1.3. TCP Data Interface

The FFTS software transmits spectra data together with header information by a TCPnetwork connection to a data consumer program. The protocol is documented in RD-01.

To illustrate the data transfer, a simple consumer program (FW.c) – implemented in C – is available in source code. The program compiles with: gcc -Wall -O2 -lm -o FW FW.c swap.c

FW is called from the command line with the IP number of the FFTS-PC, e.g. FW 134.104.70.12.

If started on the FFTS-PC, the IP number can be replaced by the keyword 'localhost'.

Example: Output of FW program for a two board FFTS.

```
FFTS> FW localhost
```

FitsWriter is connected to localhost and waiting for data...

```
-----[ DUMP: 1 --- received:

262224 Bytes ]---- IEEE:

[EEEI] dataFormat: [F ]

package Length: 262224

BackendName: [XFFTS]

Timestamp: [2011-03-31T23:51:52.6660GPS ]

Integration: 998993 us

Phase: 1
```

XFFTS Manual_2015 Radiometer Physics GmbH Werner-von-Siemens-Str. 4 53340 Meckenheim, Germany 21

+49 (0) 2225 99981 – 0 www.radiometer-physics.de info@radiometer-physics.de

BE-Sections: 2 Blocking: 1 _ _ _ _ _ _ _ _ _ _ _ _ _ BE# 1, channels: 32768 BE# 2, channels: 32768 _____ -----[DUMP: 2 --- received: 262224 Bytes]---- IEEE: [EEEI] dataFormat: [F 1 package Length: 262224 BackendName: [XFFTS] [2011-03-31T23:51:53.6660GPS] Timestamp: Integration: 998993 us Phase: 2 2 BE-Sections: Blocking: 1 - - - - - - - -- - - - - BE# 1, channels: 32768 BE# 2, channels: 32768 _____

3.1.4. Example: SCPI command sequence

The following UDP/SCPI command sequence demonstrates the successful configuration of the FFTS for a measurement with 4 FFTS-Boards. The first two boards are setup to 2048 spectral channels, the second two boards transmit spectra with 8192 channels. Blank and Sync time is set to 1 second and 5 ms, and internal generation.

```
RPG:XFFTS:cmdMode INTERNAL
                                        # use internal Blank/Sync generator
RPG:XFFTS:cmdSyncTime 1000000
                                          # Sync time: 1 sec
RPG:XFFTS:cmdBlankTime 5000
                                          # Blank time: 5 ms
RPG:XFFTS:cmdUsedSections 1 1 1 1 0 0 0 0 # select the first
four FFTS-Boards
RPG:XFFTS:Band1:cmdNumSpecChan 2048
                                          # set FFTS-Board 1 to
2048 channels RPG:XFFTS:Band2:cmdNumSpecChan 2048
                                                      #
RPG:XFFTS:Band3:cmdNumSpecChan 8192
                                        # set FFTS-Board 3 to 8192 channels
RPG:XFFTS:Band4:cmdNumSpecChan 8192
                                       #
RPG:XFFTS:configure
                                          # activate commanded parameters
RPF:XFFTS:calADC
                                          # optimize ADC interleaving
RPG:XFFTS:start
                                          # start measurement and data transfer
                                          # stop measurement and data transfer
RPG:XFFTS:stop
```


3.2. FFTS-Configuration-File

```
#
# Fast Fourier Transform Spectrometer
#
# >>> Multi-Core setup <<<
#
# setup and configuration file / multi-core version
#
# 2011-03-31, bklein@mpifr-bonn.mpg.de
#
```

[common]

```
telescopeName
                 = RPG
                             # maximum 10 chars
backendName
                 = XFFTS
                                   # maximum 8 chars
UDPportNumber
                 = 16210
TCPportNumber
                 = 25144
tempFiles
                 = /ramdisk/ # directory for temporary files
# SETUP: 300 MHz bandwidth, 32k spectral channels
[FPGA1]
coreFile
           = ../XILINX/virtex6_32K_300_4wola_19-4p_312.bin
bandwidthMHz
                 = 300
numberOfChannels = 32768
specFilter
                 = 2
windowFile
                 = ../windows/FLATTOP4WOLA32K.dat
WOLA
                 = 4
ADCdelayFile
                 = ./ADCdelay.data
# SETUP: 2500 MHz bandwidth, 16k spectral channels
[FPGA2]
          = ../XILINX/virtex6_32K_2500_4wola_19-
coreFile
4m 2500.bin bandwidthMHz
                         = 2500 numberOfChannels
= 32768
specFilter
                 = 2
                 = ../windows/FLATTOP4WOLA16K.dat
windowFile
WOLA
                 = 4
ADCdelayFile
                 = ./ADCdelay.data
# configuration settings BOARD->FPGA<num>
[BOARD FPGA]
FFTSboard01
                 = FPGA1
FFTSboard02
                 = FPGA2
FFTSboard03
                 = FPGA1
FFTSboard04
                 = FPGA2
FFTSboard05
                 = FPGA1
FFTSboard06
                 = FPGA2
FFTSboard07
                 = FPGA1
FFTSboard08
                 = FPGA2
[FFTScrate]
                       = 1
usedFFTScontrollers
usedFFTSboards
                 = 8
```


[FFTScontroller] refFreqMHz01 = 100 # INT(ernal) frequency is 100 MHz # reference frequency range: 5 - 125 MHz, refFreqMHz02 = 100 refFreqMHz03 100 # step size is: 5 MHz = refFreqMHz04 100 = refFreqSource01 TNT = refFreqSource02 = INT [FFTScontrollerIPs] IPcontrollerNum01 = 192.168.10.10 # master FFTScontroller / crate 1 IPcontrollerNum02 = 192.168.10.20 # FFTScontroller / crate 2 [FFTSboardIPs] IPboardNum01 = 192.168.10.11 IPboardNum02 = 192.168.10.12IPboardNum03 = 192.168.10.13 IPboardNum04 = 192.168.10.14 IPboardNum05 = 192.168.10.15 IPboardNum06 = 192.168.10.16 IPboardNum07 = 192.168.10.17 IPboardNum08 = 192.168.10.18 IPboardNum09 -192.168.10.21 ... ###

3.3. UDP/SCPI commands

The UDP/SCPI-commands are subdivided in three parts: **Methods**, **Properties** and **Band dependent commands**. The following list compiles all UDP/SCPI commands, which are currently implemented in the FFTS software.

3.3.1. Methods

SCPI command:	Description:
XFFTS:START	Start measurement in first phase
XFFTS:STOP	Stop measurement (after last phase)
XFFTS:ABORT	Abort measurement after current phase
XFFTS:CONFIGURE	Configure FFTS; activate all commanded settings
XFFTS:INITSYNTHESIZER	Initialize all FFTS on-board synthesizer

XFFTS Manual_2015 Radiometer Physics GmbH Werner-von-Siemens-Str. 4 53340 Meckenheim, Germany

3.3.2. Properties

SCPI command:	Description:
XFFTS:STATE	FFTS state: ENABLED, DISABLED
XFFTS:BLANKTIME	Get Blank time in µs
XFFTS:CMDBLANKTIME	Set new Blank time in µs, min. 1 ms
XFFTS:SYNCTIME	Get Sync time in µs
XFFTS:CMDSYNCTIME	Set new Sync time in μ s, range 100 ms – 5 s
XFFTS:NUMPHASES	Get number of Blank/Sync Phases
XFFTS:CMDNUMPHASES	Get new number of Phases, range 1 – 4 Phases
XFFTS:MODE	Blank/Sync mode: INTERNAL or EXTERNAL
XFFTS:CMDMODE	Set Blank/Sync mode to INTERNAL or EXTERNAL
XFFTS:USEDSECTIONS	Display which FFTS-Boards (sections) are selected to transmit spectra via TCP protocol
XFFTS:CMDUSEDSECTIONS	Select FFTS-Boards which are allowed to transmit spectra via TCP protocol
XFFTS:VERSION	Get FFTS software version number
XFFTS:RELEASE	Get FFTS release date
XFFTS:CALADC	(re-)calibrate the ADC interleaving of all ADCs
XFFTS:INFO	Display FFTS-Board information for board <i>n</i> (<i>n</i> : 1x)
XFFTS:DUMP	Dump out <i>m</i> spectra from selected boards via TCP
XFFTS:SAVEADCDELAYS	Save all ADC delays in file "ADCdelay.data"
XFFTS:LOADADCDELAYS	(re-)load ADC delays from file "ADCdelay.data"

3.3.3. Band dependent commands

The UDP/SCPI protocol denotes FFTS-Boards as BANDs, beginning with BAND1. A FFTS system with many FFTS-Boards in several FFTS-Crates, the FFTS-Board on the left side in the first crate is identified as BAND 1. Consequently, the last BAND marked the FFTSBoard in the last crate on the right side (see section 4.1 for an illustration of the FFTSBoard numbering).

Currently, the FFTS software supports up to 32 FFTS-Boards in 4 FFTS-Crates.

The following SCPI commands only refer to the FFTS-Board n (BANDn).

Fast Fourier Transform Spectrometer RPG_XFFTS

SCPI command:	Description:
XFFTS:BAND <i>n</i> :NUMSPECCHAN	Get number of spectral channels
XFFTS:BAND <i>n</i> :CMDNUMSPECCHAN	Set number of spectral channels (only power of two values are allowed: 8192, 4096, 2048,)
XFFTS:BAND <i>n</i> :BANDWIDTH	Get bandwidth [MHz] of FFTS-Board <i>n</i>
XFFTS:BAND <i>n</i> :CMDBANDWIDTH	Set bandwidth [MHz]. Possible bandwidth depends on the FPGA core. Default: 2500 MHz
XFFTS:BAND <i>n</i> :MIRRORSPECTRA	Get "mirror spectra" info: 0:mirror off (default)/ 1:mirror on (e.g. for even Nyquist zone sampling)
XFFTS:BAND <i>n</i> :CMDMIRRORSPECTRA	Set "mirror spectra": 0:mirror off / 1:mirror on (e.g. for even Nyquist zone sampling)
XFFTS:BAND <i>n</i> :CALADC	Calibrate/optimize ADC interleaving
XFFTS:BAND <i>n</i> :ADCDELAY	Depending on the FPGA core and the total bandwidth, the timing between the ADC and FPGA has to be adjusted. For the default core and 2.5 GHz bandwidth, this command is more or less obsolete.
XFFTS:BAND <i>n</i> :TIME	Get GPS/IRIG-B time and date
XFFTS:BAND <i>n</i> :TEMPERATURE	Get FFTS-Board temperatures in °C for the ADC, FPGA and power supplies
XFFTS:BAND <i>n</i> :SPECFILTER	Due to the ADC interleaving, a narrow interference line (<i>birdie</i>) can appear in one frequency bin exactly in the middle of the band. Mostly, this birdie can be minimized by calibrating the ADCs after they reached the final stable temperature, e.g. 5 minutes. If not, the command SPECFILTER 2 divides the total bandwidth in 2 parts and remove the birdie by interpolating between the direct neighbor bins of both parts. The SPECFILTER can also be defined in the FETS configure file: FETS cfg

3.4. FFTS-Monitor GUI

The Monitor-GUI can only update its indicators when the FFTS-Software is running.

With the **FFTS#**-control element, the FFTS-Board to monitor is selected.

BW / MHz:	Full usable bandwidth for the current FFTS configuration
Channels:	Number of spectral channels
Sync:	Phase time in ms
Blank:	Blank time in ms
Phase:	current Phase / total number of Phases
Mode: Externa	Internal: Blank/Sync is generated by the FFTS-Controller al: Blank/Sync is accepted from an external source
Int-Time:	Integration time of the current spectrum
Irig-B:	GPS time in format HH:MM:SS.microseconds
Temperature: [•] Board, in °C	Temperature of ADC-chip, main FPGA-chip and FFTS-
IRIG-B:	green=OK / red=IRIG-B-Signal is corrupted or not available
Transmit:	green=OK / red=Data transfer to the FFTS-PC was not successful
Overflow:	Overflow flags for several points of the signal process pipeline

+49 (0) 2225 99981 – 0 www.radiometer-physics.de info@radiometer-physics.de

All data and specifications are subject to change without notice! © Radiometer Physics GmbH 2015

3.4.1. Spectrum display

The upper diagram displays measured spectra (bandpasses). X-axis is frequency in MHz, Y-axis is power in dB. To zoom in and out, use the **zoom-tools** in the lower left corner of the diagram or change the first or the last scale-label available on both axis. To compare spectra, you can freeze the current spectrum by pushing the **Take Ref** button and clear it by pushing the **Clear Ref** button.

The lower diagram shows the statistical distribution of the ADC-output. The X-axis represent the digital value of the ADC; the Y-axis is the normalized number of occurrences for each ADC value.

3.4.2. (on-off)/off display

The upper diagram shows a waterfall-plot of normalized spectra. The normalization is calculated by (on-off)/off, where off is the first spectrum which is recorded after pressing the **Run-History** button. Consequently, all following dumps are denoted as on spectra. After starting the **GUI** and pressing the **Run-History** button, it is necessary to push the **Reset-History** button once to initialize the waterfall plot. Every mouse-click on the **ResetHistory** button will clear the waterfall-plot. Zooming to the plots is possible in the same way as already described in section 3.3.3. In addition,

XFFTS Manual_2015 Radiometer Physics GmbH Werner-von-Siemens-Str. 4 53340 Meckenheim, Germany

the GUI allows changing the colors and orientation of the intensity-scale by the control elements **Color-Table**, **Symmetric** and **Invers**. The intensity scale can be adjusted by changing the first and last scale-label.

The lower panel displays single (on-off)/off calculations. As long as the **Run-History** button is not activated, the off spectra are derived from Phase 1 and the on spectra are recorded in Phase 2. It is possible to average adjacent frequency channels to reduce the resolution and the noise-floor of the spectra. The number of channels which are smoothed together is specified by the **Rebin** field.

Note: Avoid changing the Rebin factor while running a waterfall-plot because it affects the number of frequency channels in this plot too.

3.4.3. Total-Power-Display

This diagram displays the IF-input level of up to 32 FFTS-Boards.

3.5. FPGA core file

The default FPGA core file (2.5 GHz bandwidth / 32768 spectral channels) is named: *virtex6_32K_2500_4wola.bin* Name and location of this core file is specified in the FFTS.cfg startup settings. See section 3.2.

Additional core files are available on request!

3.6. Polyphase filter bank coefficients / Window file

The filter coefficients are uploaded during the initialization phase of the FFTS. The default filter coefficients (File: *FLATTOP4WOLA32K.dat*) are optimized for astronomical line observations. The ENBW is $1.16 \times \Delta v$. (see sections 2.) Name and location of the filter coefficient file is specified in the FFTS.cfg startup settings. See section 3.2.

4. Environment

4.1. Recommended Wiring-Scheme

+49 (0) 2225 99981 – 0 www.radiometer-physics.de info@radiometer-physics.de

All data and specifications are subject to change without notice! © Radiometer Physics GmbH 2015

Fast Fourier Transform Spectrometer RPG_XFFTS

4.2. Recommended IP-Configuration

eth0 : LAN eth1 : FFTS-Crate 1 + 2 (recommended IP: 192.168.10.1) eth2 : FFTS-Crate 3 + 4 (recommended IP: 192.168.20.1)

4.3. Ethernet-Switch

A buffered Ethernet-Switch that is capable of storing in minimum of one standard Ethernetframe in each port is necessary to connect the FFTS-Boards to the FFTS-PC. If more than 1 FFTS-Board is connected to one PC we recommend a 1000BaseT-connection. One PC can handle up to 32 FFTS-Boards. In this case two of the recommended Switches are needed.

Our recommendation is a **HP ProCurve2810-24G Switch** (24-Port Gigabit-Switch)

XFFTS Manual_2015 Radiometer Physics GmbH Werner-von-Siemens-Str. 4 53340 Meckenheim, Germany

+49 (0) 2225 99981 – 0 www.radiometer-physics.de info@radiometer-physics.de

4.4. Backend-PC

4.4.1. Hardware Requirements

- Server-motherboard with:
 - 1 x 10/100/1000 LAN-Port

1 x independent Gigabit-Ethernet-Port (2 Gigabit-Ports to operate with 2 Switches) e.g. Asus P5BV-C/4L (4 x Gigabit-LAN) Intel Core2Quad-CPU, 2 GByte Ram

4.4.2. Software Requirements

• Operating System:

Debian GNU/Linux 4.0r3 or later, Kernel 2.6.18 or later (vnc4server, vnc4viewer, gcc, make, python, labview-runtime-engine)

• Network setup:

10/100/1000-Lan: Use a network-setup, that covers your local LAN requirements e.g. 'dhcp'

Gigabit-LAN 1: static IP-address: 192.168.10.1 (recommended) Netmask 255.255.255.0

Gigabit-LAN 2: static IP-address: 192.168.20.1 (recommended) Netmask 255.255.255.0

• RAMDISK:

Used for communication with the LabView FFTS-Monitor Tool.

 create a RAM-Disk-Volume with a maximum size of 1 Gbyte at /media/ramdisk:

root> mount -t ramfs -o maxsize=1048576 none
/media/ramdisk/

- allow normal users to acces this RAM-Drive: root> chmod 0777 /media/ramdisk/

- create a symbolic link /ramdisk pointing to /media/ramdisk: root> ln -

- s /media/ramdisk/ /ramdisk VNC-Session: Useful to display the FFTS-Monitor Tool on different PCs.
- login as normal user and startup an VNC server session e.g.: vncserver -geometry 1024x768 -alwaysshared :2
- now the VNC can be started on several PCs in the local network, e.g.: vncviewer -shared <FFTS-IP number>:2

5. Reference documents

RD-01

APEX SCPI socket command syntax and backend data stream format, 2006-03-29 (available at: http://www.radiometer-physics.de/rpg/docs/FFTS/APEX-MPI-ICD-0005-R1_0.pdf)